The effect of slice order and thickness on fMRI activation data using multislice echo-planar imaging.

نویسندگان

  • A M Howseman
  • S Grootoonk
  • D A Porter
  • J Ramdeen
  • A P Holmes
  • R Turner
چکیده

Multislice echo-planar imaging (EPI) is a commonly used technique for fMRI studies. Brain activation images acquired using fMRI are sensitive to T2* changes, reflecting the level of blood oxygenation (BOLD contrast), and may also contain an element of T1 contrast which detects blood flow changes in large vessels. If slice inflow (T1) effects are significant in multislice EPI, then as the order in which the slices are acquired is changed, differences in the activation maps are predicted. However, in experiments presented here using visual stimulation, the data demonstrate that highly consistent results can be achieved for repetition times (TR) of 6.0, 3.0, and 1.5 s. This suggests that, for whole-brain multislice EPI, fMRI activation is dominated by T2*, BOLD contrast. The thickness of the imaging slice is also an important parameter in these studies, having implications for spatial resolution, sensitivity, and acquisition time. In separate visual cortex experiments the effect on the values of the fMRI Z scores and the number of activated voxels is investigated as a function of slice thickness (from 1 to 8 mm). The maximum Z scores in the data are similar for all slice thicknesses and, after resampling to allow a direct comparison to be made, the volume of visual cortex detected as significantly activated increases with slice thickness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...

متن کامل

Evaluation of Sensory Pathways in Spinal Cord by Comparison of fMRI Methodologies

Introduction: Today, clinicians and neuroscientists need to have a comprehensive survey of neurological pathologies and injuries. For the First-time, SEEP contrast and Spin-Echo pulse sequences was used for functional imaging of the Lumbar spinal cord. This method used by several research groups for Spinal cord mapping, but other researchers tried to improve BOLD fMRI to Spina...

متن کامل

Reduced susceptibility effects in perfusion fMRI with single-shot spin-echo EPI acquisitions at 1.5 Tesla.

Arterial spin labeling (ASL) perfusion contrast is not based on susceptibility effects and can therefore be used to study brain function in regions of high static inhomogeneity. As a proof of concept, single-shot spin-echo echo-planar imaging (EPI) acquisition was carried out with a multislice continuous ASL (CASL) method at 1.5T. A bilateral finger tapping paradigm was used in the presence of ...

متن کامل

Using functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas

Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...

متن کامل

Using functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas

Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 1999